

FOS Prototype Results Review Andy Miller

24 August 1995

Prototype Results Review Agenda

Prototype Results Overview

Prototype Results Presenters

User Interface

Planning and Scheduling

- Resource Model Distribution

- Accesses

- Activity Definition

- Activity Constraints

Command Management

Real-time

Analysis

Data Management

Andy Miller

Jim Creegan

Guy Swope

Guy Swope

Ken Cockerill

Jim Yu

Steve Pawlish

Theresa Brandt

Ken Fregeolle

Kevin Robair

Dave Peters

FOS Prototype and Studies Background

General FOS prototype goals

- User satisfaction
 - Demos to the user community (i.e., formal, informal)
 - Useability testing
 - Involvement of the ECS FOT (e.g., SSR rule definition)
- Risk mitigation
 - Drive out requirements and design
 - Develop object oriented methodology experience
 - Development of interfaces (e.g., Planning and Scheduling and Command Management)
- Technology Assessment
 - Expert Systems
 - User interface features (Schematics, 3D plots)

FOS Prototype and Studies Background

FOS prototyping initially performed as four individual prototypes

- Planning and Scheduling
- Command Management
- Decision Support
- Instrument Support Toolkit

FOS conducted Prototype Results Reviews demonstrating the FOS prototypes and delineating results

PRR #1 November 1993

PRR #2 June 1994

• PRR #3 February 1995

FOS Prototype and Studies Goals

Primary Theme for February 1995 through August 1995 phase

- Perform studies and analysis to drive out the FOS detailed design
- Solve specific design issues through proof-of-concept prototypes

Key Objectives

- Determine COTS to procure
 - User interface graphics
 - Analysis packages
 - Data Base package
- Analyze detailed design issues
- Prepare and refine screen mock-ups

ECS class library selection

Purpose

Evaluate and select the class library for the ECS project

Approach

- Evaluate class libraries (Booch Components, Hughes Class Libraries, Object Systems, Rogue Wave)
- Evaluation criteria
 - POSIX compliant, thread safe, exception handling built-in, multiplatform support, add-on libraries, ease of use with IPC, multiple inheritance, templates
- Evaluation process
 - 8 developers across ECS project; 2 per library
 - Same development/maintenance task for every library
 - Evaluation data scored (time to find a class, time to use a class, documentation, time to modify an existing application)

Results

- Selected Rogue Wave
- Clear choice using both objective and subjective criteria

Prioritize coding

- General Results
 - Identify and develop common software objects first
 - Subclasses are inherited from fully defined base classes

Stp/OMT Code Generation Capabilities

- General Results
 - Generates templates from object models from which software development can start
 - Reduces menial typing
 - Automate data dictionary generation from OMT-generated header files

Low-level software items

- General Results
 - Prototyped sending Rogue Wave objects across sockets, DECmsg Queues, Pure Logic Pipes
 - Mitigate risk of passing classes
 - Verified ability to pass classes in each case
 - Prototyped multiple inheritance with Rogue Wave
 Determine if multiple inheritance supported on all platforms
 Multiple inheritance is fully supported; increases reuse

System Prototypes - On-going and Future

NSI Testbed/IST simulation prototype

Purpose

- Determine/analyze EOC/IST network performance characteristics
- Scheduling
 - Interactive scheduling
- Real-time
 - Packet sequence
 - Packet delay
 - Data transfer rates (e.g., telemetry)
- File transfers
 - FTP

System Prototypes - On-going and Future

Parameter server/monitor prototype

Purpose

- Provide generic mechanism for the maintenance, service, and receipt of ground system and telemetry parameters
- Used by multiple FOS subsystems (i.e., user interface, telemetry, command, and analysis)

PC-based Unix User Station Prototype

Purpose

• Evaluate potential porting and performance issues regarding low-cost workstation solutions (i.e., Solaris)